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A Rigorous Thermodynamic Property Model
for Fluid-Phase 1,1-Difluoroethane (R-152a)

I M. Astina! and H. Sato*3

Received June 7, 2004

A new thermodynamic property model for the Helmholtz free energy with
rational third virial coefficients for fluid-phase 1,1-difluoroethane (R-152a)
was developed. The model was validated by existing experimental data for
temperatures from the triple point to 450K and pressures up to 60 MPa.
Reasonable behavior of the second and third virial coefficients was confirmed
from intermolecular potential models. The estimated uncertainties are 0.1% in
density for the gaseous and liquid phases, 0.4% in density for the supercrit-
ical region, 0.05% in speed of sound for the gaseous phase, 2% in speed of
sound for the liquid phase, and 1% in specific heat capacities for the liquid
phase. From the reasonable behavior of the ideal curves and the third virial
coefficients, the model can be assumed reliable in representing the thermody-
namic properties not only at states with available experimental data but also
at states for which no experimental data are available.

KEY WORDS: 1,1-difluoroethane; Helmholtz energy equation of state; HFC
refrigerant; intermolecular potential; R-152a; thermodynamic model;
virial coefficients.

1. INTRODUCTION

1,1-Difluoroethane (R-152a) is a hydrofluorocarbon (HFC) refrigerant
that shows theoretically high performance in applications for heat pumps.
Several efforts to use R-152a as an alternative refrigerant were made in
the 1990s. Investigations of both experiments and modeling for the ther-
modynamic properties of R-152a are still ongoing. Several thermodynamic
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property models for the fluid-phase of R-152a have been proposed such
as the Helmholtz energy equation of state [1, 2], the MBWR equation of
state [3], and the virial equation of state [4].

Detailed aspects for developing a new model with a theoretical back-
ground were given in a previous paper on R-32 [5]. Models for R-125 and
R-134a were developed by means of the same procedure [6, 7]. This paper
presents development of a thermodynamic property model, using this same
concept for the fluid-phase of R-152a in a series of studies on thermody-
namic modeling of HFC refrigerants.

2. MAIN PARAMETERS AND ANCILLARY EQUATIONS

Physical parameters and ancillary equations are needed for the devel-
opment and implementation of the thermodynamic property model. The
critical parameters used are the critical temperature of 386.41 K [8],
the critical density of 368 kg-m~3 [8], and the critical pressure of 4.516
MPa derived from the extrapolation of the vapor-pressure equation devel-
oped in this work. Other parameters are the triple-point temperature of
154.56 K [10], the gas constant of 8.314472 J.mol~!.K~! [11], and the
molar mass of 0.066050 kg-mol~".

Three ancillary equations for the vapor pressure and saturated-vapor
and saturated-liquid densities from the triple point to the critical point were
developed in this work. The vapor-pressure equation can be written as

n s ZN, (1_—>ti, (1)

where N1 =-7.347239, 1 =1, N, =1.519178, t,=1.5, N3 =—1.892860, 13 =
2.5, Ny=-3.029767, and t4=5. The saturated-liquid density equation can
be expressed as

——1_ZN <1——)Ii, )

where Ni=1.842790, 1 =1/3, N»=0.7160983, 1, =2/3, N3 =0.2037560,
t3=1, N4y =0.2454605, and t4 =3. The saturated-vapor density equation
can be expressed as

- ZN (1__>", G)

where Ny =—2.117459, t; = 1/3, N = —6.430882, t=1, N3 =—19.21177,
ty=3, Ny=—66.492476, ts=7, Ns=5.603786, and rs = 10.
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3. DEVELOPMENT OF THERMODYNAMIC PROPERTY MODEL

Input data for thermodynamic modeling include experimental mea-
surements of PVT and caloric properties. The distribution of the selected
data for R-152a is shown in Fig. 1. The available reliable experimental
data at low temperature are scarce. PV'T data for the liquid phase con-
sist of 26 points of Geller et al. [12], 126 points of Magee [10], and 289
points from Tillner-Roth and Baehr [13]. PV'T data in the superheated-
vapor phase consist of 20 points of Dressner and Bier [14], 319 points of
Tillner-Roth and Baehr [15], and 28 points of Tillner-Roth and Baehr [13].
PVT data in the supercritical region consist of 27 points of Blanke and
Weiss [16], 8 points of Dressner and Bier [14], 8 points of Magee [10], 44
points of Tillner-Roth and Baehr [15], and 88 points of Tillner-Roth and
Baehr [13].

Experimental caloric data consist of the isochoric specific heat capac-
ity and the speed of sound. Eighty-five points for the isochoric specific
heat capacity in the liquid phase from Magee [17] are available, includ-
ing 66 points of derived data for the saturated-liquid specific heat capacity.
Speed-of-sound data in the gaseous phase were selected from 44 points of
Hozumi et al. [18] and 148 points of Gillis [19], and the data for the lig-
uid phase consist of 51 points of Beliajeva et al. [20] and 50 points from
Grebenkov et al. [21].

There are no isochoric specific heat capacity measurements in the gas-
eous phase. This property is directly related to the second derivatives of
the Helmholtz free energy with respect to temperature. The final equa-
tion of state was greatly improved by including measurements in the fit for
both the liquid and gaseous phases. By using an accurate virial equation

p, MPa
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Fig. 1. Selected experimental data for developing the new
thermodynamic property model. (¢) PVT; (A ) cy; (o) w.
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of state [9] and the ideal-gas isobaric specific heat capacity equation, the
isochoric specific heat capacities were calculated in the gaseous phase at
pressures lower than 2 MPa. The second and third virial coefficients were
also included in modeling. These data were calculated from the virial
coefficient relation given in Ref. 9.

Two critical constraints were included in fitting by setting the first
and second derivatives of pressure with respect to density at the critical
point to zero. The Maxwell criterion has an important role in modeling
the saturation states. This criterion (equal pressures and Gibbs energies at
the saturation temperature) requires the vapor pressure and the saturated-
liquid and saturated-vapor densities at a given temperature. Since data sat-
isfying these requirements are not available, the three ancillary equations
presented earlier were used to calculate saturation properties and were
used in fitting to describe the vapor pressure and the saturated-vapor and
saturated-liquid densities from the triple point to the critical point.

4. NEW THERMODYNAMIC PROPERTY MODEL

The new thermodynamic property model consists of an ideal-gas part
and a residual part. The ideal-gas part provides the properties of the fluid
in the ideal-gas state. The residual part provides the properties of the real
fluid (the residual separated from the contribution of the ideal gas). The
relations among the thermodynamic properties are given in Table 1. All of
these properties can be calculated from the model.

The ideal-gas part was derived by means of integration of the ideal-
gas isobaric specific heat capacity equation. This equation was established
by fitting to theoretical values derived by Yokozeki et al. [22], and opti-
mized by introducing polynomial and Planck—Einstein terms. The terms
were selected in accordance with an original genetic optimization method,
which will be introduced in another paper. The integral boundary condi-
tion was defined with a reference state of 200kJ-kg~! for enthalpy and
1kJ-kg="-K~! for entropy for the saturated liquid state at 273.15K. The
ideal-gas part is written as

5
a°@,7) =1In (—) + NS+ NPT+ NS ™09 4 N9 02
T

5

+> NP In{1—exp(—bP7)}. “4)
i=4

where Ny =—9.508135074, NP = 6.812068779, N5 =—7.285916044, N3 =
6.741130104, Ny =1.978152028, N =15.880826311, by =1.753741145, and
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Table I. Relations of Thermodynamic Properties from Helmholtz Free Energy

Property Relations
Compressibility factor Z=1+day
Pressure P8, 1)/ (pRT)=148aj
Fugacity f(8, 1) =pexp{a’ +daj —In(1+8aj)}
cellSpecific heat capacity of ideal gas cp(v)/R=1 — 1222, =14c2()/R

i ; : 1480} —b7af,)?
Isobaric specific heat capacity cp(8,7)/R=cy(8,7)/R+ %
Isochoric specific heat capacity ev(8,T)/R=—1Xa +at,)
Saturated-liquid specific heat capacity c.(8',7)/R= ‘”(5 L (+da} 75/1%’)

q P pacity  ¢(0, (1250 $570(}))
1 dp@d,n)
{1 +5/0‘r - 5’“"& ~ Rped’ pdTT }

Isothermal compressibility

Isobaric expansion coefficient

Joule-Thomson coefficient
Specific enthalpy
Specific entropy
Specific Gibbs free energy

Specific internal energy

Speed of sound
Second virial coefficient

Third virial coefficient

Kk (8, T)pRT = {14280} +82ats) !
B, 7)- T =(1+8af —téal ) (1 +28ak +82afy)

_(5a(§+62a§6 +otay,)
(+8ef—dtaf ) +ey (8.0)/ R(1+20af+520f;)

h($,1)/(RT)=1(af + )+ 1+ da

n@, 1)Rp=

5@, 1)/ R=1(@®+al)—(a°+a)
g6, 1)/(RT)=140a°+a" + oy
u@,7)/(RT)=t(a?+al)

(1480 —b7af )?

w?(8, T)/(RT) =1 +28a} +82ak, + R

B(7)pc = lim af
() pe 5%0015

C@)pt =lim o,

A tions: il il 92 9 9’
Abbreviations: Otgz(ﬁ)r, oz :(ﬁ)ﬁa aéﬁz(ﬁ)h Orr :(ﬁ)& Ast :(ﬁ)a Bzﬁv T=7

=4.360150337. The residual part was determined from a multi-property
regression and genetic optimization for selecting terms in the equation.

The residual part is written as

14

ZN 8¢t +ZN 8% ¢ exp(—8) + Z N;8% ¢'i exp(—8%)

i=1 i=9
17

+ ) Nt exp(—8?),

i=15

i=12

(®)
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Table II. Numerical Coefficients and Parameters
of the Residual Part

i N; d; t;
1 1.753847317 x 10° 1 0.5
2 —4.049760759 x 10° 1 1.125
3 —2.277389257 x 107! 1 2.875
4 7.087751950 x 10! 2 0.875
5 —5.528619502 x 10! 2 1.875
6 —3.025046686 x 1072 3 0.5
7 1.396289974 x 10! 3 1.875
8 1.121238954 x 1074 4 4
9  1.181005890 x 10° 1 1.25
10 1.535785579 x 10° 2 2
11 7.468363045 x 107! 3 2.75
12 —1.252266405 x 107! 1 6
13 —3.898223986 x 102 2 9
14 —7.260588801 x 102 3 6
15 —2.659302250 x 1073 3 22
16  4.210849329 x 1073 4 20
17 2.015953966 x 104 5 32
R=28.314472J-mol~!.K~! pe=368 kg-m™3
T,=386.41K pe=4.5160 MPa

where the numerical coefficients and parameters are given in Table II. The
reducing parameters for these equations are § =p/p. and t=T,/T. The
calculated thermodynamic properties from the new model, which are very
useful to verify computer program, are given in Table III.

5. ASSESSMENT

Representation of thermodynamic properties from the new model was
assessed by comparing with experimental data. Deviations of the thermo-
dynamic properties were calculated with the new model as the baseline.
Table IV shows the statistical results for the accuracy of the thermody-
namic properties at saturation and in the single phase.

The ideal-gas isobaric specific heat capacities of Yokozeki et al. [22]
are reproduced from 120 to 1000 K within 0.05% as shown in Fig. 2. The
equations of Outcalt and McLinden [3] and Tillner-Roth [1] show system-
atically higher deviations from the Yokozeki et al. data.

The representation of the saturation properties can be assessed by
comparing values calculated from the new model with measurements of
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Fig. 2. Deviations of ideal-gas isobaric specific heat
capacities from the new thermodynamic property
model. (A) Gillis [19]; (o) He et al. [41]; (+) Hozumi
et al. [18]; (¢) Yokozeki et al. [22]; (---) Tillner-Roth
[1]; (—) Outcalt and McLinden [3]; (
et al. [48].

) Sato

Astina and Sato

400

Fig. 3. Deviations of vapor pressures and saturation tempera-
tures from the new thermodynamic property model. (A) Duarte-
Garza and Magee [30]; (¢) Higashi et al. [8]; (o) Holcomb et al.
[23]; (x) Sato et al. [32]; (O) Silva and Weber [33]; (+) Zhao et al.
[36]; (- --) Tillner-Roth [1]; (——) Outcalt and McLinden [3].

the vapor pressure and the saturated-liquid and saturated-vapor densities.
Comparisons to the other models were also assessed. The deviations of
vapor pressures and saturation temperatures are shown in Fig. 3. Devi-
ations for the saturated-liquid and saturated-vapor densities are given in
Fig. 4. Both the new model and also the older ones show larger discrepan-
cies in density for the states near the critical point. The uncertainties are
0.1% for the vapor pressure, 0.05% for the saturation temperatures, 0.2%
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Fig. 4. Deviations of saturated-liquid and saturated-vapor den-
sities from the new thermodynamic property model. (A) Wang
et al. [28]; (O) Holcomb et al. [23]; (M) Blanke and Weiss [16];
(+) Higashi et al. [8]; (x) McLinden [26]; (----- ) Tillner-Roth [1];
(——) Outcalt and McLinden [3].

for the saturated-liquid densities, and 0.5% for the saturated-vapor densi-
ties. Available experimental data for the saturated-vapor densities are very
scarce at lower temperatures. Calculated values from the new model for
the saturated-liquid densities fall between the data of Wang et al. [28] and
of Blanke and Weiss [16].

Density deviations over a wide range of single-phase gaseous and lig-
uid states are shown in Fig. 5 for high temperatures and Fig. 6 for low
temperatures. The density deviation for the superheated-vapor phase is
represented within 0.1%, that for the liquid phase is within 0.1%, and that
for the supercritical region is within 0.4%.

The speed of sound in the gaseous phase is reproduced with an uncer-
tainty of 0.02%, while the speed of sound in the liquid phase is repre-
sented within 1%. These results are shown in Fig. 7. The isobaric and
isochoric specific heat capacities in the liquid phase are shown in Fig. 8.
The uncertainty for the isobaric specific heat capacity is 2%, and that for
the isochoric specific heat capacity is 1%. The saturated-liquid specific heat
capacity data of Magee [17] is reproduced with an uncertainty of 1% as
shown in Fig. 9.

Critical parameters were determined from the new model. The calcu-
lated critical temperature and density are 367.9987 kg-m—> and 386.4101 K.
Using these values, the critical pressure calculated from the new model is
4.5160 MPa. This demonstrates that the fitting of the critical constraints in
the regression adequately yielded the critical parameters.
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Fig. 5. Deviations of the density at temperatures higher
than 320K from the new thermodynamic property model.
(O) Blanke and Weiss [16]; () Defibaugh and Moldover
[37]; (©) Magee [17]; (A) Tillner-Roth and Baehr [15]; (x)
Tillner-Roth and Baehr [13].

6. EXTRAPOLATION BEHAVIOR AND FEATURES

In general, the most accurate model will give reasonable second virial
coefficients that agree with intermolecular potential theory. However, third
virial coefficients derived from existing models do not agree well with
intermolecular potential models. Figure 10 shows large discrepancies of
the third virial coefficients derived from several models. Yokozeki et al.
[22] calculated the second and third virial coefficients from the Stockmayer
intermolecular potential model. The behavior of several models at extreme
temperatures is also shown. Both the second and third virial coefficients at
extreme temperatures derived from the new model are asymptotically close
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Fig. 6. Deviations of the density at temperatures lower than
320K from the new thermodynamic property model. ((J) Blanke
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et al. [12]; (O) Magee [17]; (x) Tillner-Roth and Baehr [13].
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to those calculated by Yokozeki et al. [22] from the Stockmayer intermo-
lecular potential model and as close to those from Span and Wagner [2].

Specific heat capacities in the gaseous phase are useful in ascertain-
ing the quality of a model. Figure 11 compares the isochoric specific heat
capacities calculated from several models. Large discrepancies are shown
in the gaseous phase near saturation. Additionally, making experimental
measurements for verification of a model is difficult due to shortcomings

in the experiments.

Extrapolations of the thermodynamic properties from the new model
are given in Figs. 12-15. Although the amount of available data for these
properties is scarce, the values of ¢y in Fig. 12, ¢, in Fig. 13, w in Fig. 14,
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Fig. 7. Deviations of speed of sound from the new thermo-
dynamic property model. (x) Grebenkov et al. [21]; (O) Gillis
[19]; (O) Beliajeva et al. [20]; (¢) Hozumi et al. [18].
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Fig. 8. Deviations of specific heat capacities in the liquid phase
from the new thermodynamic property model. ({) Magee [10];
(x) Kubota [43]; (O) Nakagawa et al. [44]; (A) Porichanski et al.
[45]; (O) Sato and Watanabe [46].

and PVT in Fig. 15 confirm that the new model satisfactorily represents
the thermodynamic values over the wide entire fluid phase.

Reasonable ideal curves can be derived from the new model as shown
in Fig. 16. The new model shows a qualitatively reasonable representation
from a physical viewpoint at extremely high temperatures and pressures,
even in regions where no experimental data are available.

Based on this result, the new model should be able to represent the
thermodynamic properties of the entire fluid phase for pressures up to
350 MPa and temperatures up to the limits of dissociation. A pressure—
enthalpy diagram from the new model is provided in Fig. 17.
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7. CONCLUSION

A thermodynamic property model for fluid-phase R-152a was estab-
lished with rational second and third virial coefficients. The new model
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Fig. 11. Isochoric specific heat capacity in the gaseous phase from
several fluid-phase thermodynamic property models.

Fig. 12. Isobaric lines of isochoric specific heat capacity from the
new thermodynamic property model.

provides reliable thermodynamic properties even at very low temperatures
and near saturation in the gaseous phase. The specific heat capacity val-
ues in the gaseous phase near saturation are reasonably represented with-
out any thermodynamic inconsistencies.

The new model is valid in the fluid phase for temperatures from the
triple point to 450 K and pressures up to 60 MPa. The second and third
virial coefficients are in agreement with those derived in accordance with
the intermolecular potential theory. The estimated uncertainties are 0.1%
in density for the gaseous phase, 0.1% in density for the liquid phase, 0.4%
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Fig. 17. Pressure-enthalpy diagram for R-152a calculated from the new thermodynamic
property model.

in density for the supercritical region, 0.05% in speed of sound for the gas-
eous phase, 2% in speed of sound for the liquid phase, and 1% in isochoric
specific heat capacity for the liquid phase.
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NOMENCLATURE

specific Helmholtz free energy
reduced Helmholtz free energy, « =a° +o", a =a/(RT)
second virial coefficient
isobaric expansion coefficient
third virial coefficient

specific heat capacity

reduced density, o/poc
fugacity

specific Gibbs free energy
specific enthalpy

number of data
Joule-Thomson coefficient
isothermal compressibility
pressure

gas constant

mass density

specific entropy

temperature

inverse reduced temperature, T,/ T
specific internal energy
specific volume

speed of sound
compressibility factor

NE S S N“D TART TN >0 A mR D

Subscripts

p process at constant pressure
\% process at constant volume
c critical parameters

s saturation

Superscripts

saturated-liquid state
saturated-vapor state
r residual part

0 ideal-gas part

out rejected
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